Enhanced Learning and Sensory Salience in a Cerebellar Mouse Autism Model
Authors: Marlies Oostland, Mikhail Kislin, Yuhang Chen, Tiffany Chen, Sarah Jo Venditto, Ben Deverett, Samuel S.-H. Wang
PUBLICATION: BioRXIV 2021
Among the impairments manifested by autism spectrum disorder (ASD) are sometimes islands of enhanced function. Although neuronal mechanisms for enhanced functions in ASD are unknown, the cerebellum is a major site of developmental alteration, and early-life perturbation to it leads to ASD with higher likelihood than any other brain region. Here we report that a cerebellum-specific transgenic mouse model of ASD shows faster learning on a sensory evidence-accumulation task. In addition, transgenic mice showed enhanced sensitivity to touch and auditory cues, and prolonged electrophysiological responses in Purkinje-cell complex spikes and associative neocortical regions. These findings were replicated by pairing cues with optogenetic stimulation of Purkinje cells. Computational latent-state analysis of behavior revealed that both groups of mice with cerebellar perturbations exhibited enhanced focus on current rather than past information, consistent with a role for the cerebellum in retaining information in memory. We conclude that cerebellar perturbation can activate neocortex via complex spike activity and reduce reliance on prior experience, consistent with a weak-central-coherence account in which ASD traits arise from enhanced detail-oriented processing. This recasts ASD not so much as a disorder but as a variation that, in particular niches, can be adaptive.